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Abstract
We study the nonlinear dynamics of a site-dependent Heisenberg ferromagnetic
spin chain with Gilbert damping in the continuum limit and its associated
dynamics which is governed by an inhomogeneous generalized higher order
nonlinear Schrödinger equation. The effect of inhomogeneity was understood
by carrying out a multiple perturbation analysis and the coupled evolution
equations for the velocity and amplitude of the soliton were solved using the
Jacobi elliptic function method. The evolution of the amplitude and velocity
of the soliton leads to magnetization reversal via flipping of solitons in the
ferromagnetic medium. Finally, we have also constructed the perturbed soliton
solutions.

PACS numbers: 71.70.Gm, 02.03.Jr, 52.35.Mw, 03.40.Kf, 75.60.Jk, 42.81.Dp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The studies of an ultrafast magnetization reversal process in ferromagnetic media have become
one of the most exciting topics in contemporary magnetism. They break new ground
scientifically and explore length and time scales for tomorrow’s magnetic technologies.
The future development of magnetic recording technology, where the quest is for smaller
magnetic bits and faster magnetic switching, depends to a large extent on the outcome of
this research. The magnetization reversal process obtained through an understanding of the
underlying magnetization dynamics is an important issue mainly because the dynamic process
is nonlinear in nature. The magnetization reversal process is normally based on a coherent
rotation of the magnetization and a propagation of domain walls in the presence of the magnetic
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field [1]. In that case, the switching of magnetization is accomplished by the domain wall
motion which is a relatively slow process compared to a magnetization reversal by a coherent
rotation [2]. One cannot rule out the possibility of magnetization reversal without applying
external magnetic fields. Recently, it was shown that a dc pulse induces switching in magnetic
materials with uniaxial anisotropy without having applied the external magnetic field [3]. It
is proved that the fastest way to record a bit can be achieved by reversing the magnetization
through precessional motion via the magnetic field and switching by spin currents which lies
in the picosecond regime [4]. Much experimental evidence shows that the excitation of a
ferromagnetic solid or film with an ultrashort laser pulse leads to demagnetization on a time
scale of a few hundred femtosecond [5]. Recently, the fastest magnetic switching process has
been achieved in the femtosecond regime through the LINAC electron pulse [6]. At present
the magnetic device that responds to the external magnetic field is on the nanosecond time
scale and it is observed that the magnetization reversal process through thermal activation is
also in the nanoscale regime. In the conventional magnetic recording, the reversing field is
applied antiparallel to the direction of the magnetization that limits the reversal speed to the
nanosecond regime [7]. The magnetization switching achieved through other processes such
as thermal activation, stress-induced anisotropy and by applying a high intense laser pulsed
field has its own demerits like loss of information due to heating up of atoms. There are
well-studied methods and processes that offer faster manipulation of the magnetization and
even the complete switching between two well-defined magnetic states can be accomplished
much faster. Most of the available results on the magnetization reversal process is based on
experimental studies and numerical simulations, and analytical results are very limited [8–10].
Yet the understanding of the various physical processes on a faster time scale is presently
incomplete and their understanding remains a challenge. In this respect, it has been recognized
that the classical Landau–Lifshitz equation which governs the precessional motion of spins is
a useful model to describe the fast magnetization process [11, 12]. The switching time of a
magnetization reversal process mainly depends on the Gilbert damping present in the magnetic
system. In principle, the fundamental limit of the switching speed via precession is given by a
half of the precession period. The Landau–Lifshitz (LL) equation would yield the implausible
result that the reversal time approaches zero as λ̂ −→ ∞, that is, the greater the damping the
shorter the reversal time [13]. The LL equation would also yield the result that the reversal
time is proportional to 1

λ̂
. In an entirely different context, the LL equation corresponding

to different magnetic interactions has been proved to be completely integrable, admitting
soliton solutions in several cases [14–16]. For the past few decades, several attempts have
been made to study the dynamics of different magnetic interactions such as bilinear isotropic
exchange, single ion anisotropy due to the crystal field effect, inhomogeneity in the exchange
interaction and interaction with the external magnetic field, etc, which have been identified as
integrable models with localized spin excitations such as soliton, and domain wall under the
different circumstances [17–19] in the classical continuum limit. The nonlinear dynamics of
inhomogeneous systems have been widely investigated and expected to have many applications
in the construction of magnetic memory devices, logic gates and so on. Furthermore, it has been
proved that the inhomogeneous one dimensional system as well as radially symmetric spin
system, the inhomogeneous compressible biquadratic Heisenberg ferromagnetic spin chain
with harmonic lattice vibration, the inhomogeneous vortex filaments and the inhomogeneous
exchange interactions are found to be integrable under certain conditions and exhibit nonlinear
spin excitations in terms of solitons [20–23]. Also, it has been demonstrated that in [24] the
site-dependent ferromagnetic spin chain with linear inhomogeneity admits the shape changing
property during its evolution. This shape changing property can be exploited to reverse the
magnetization without loss of energy, which may have potential applications in magnetic
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memory and recording devices. In some of the other contexts, it has been manifested that
different types of nonlinear inhomogeneities have been shown to support soliton creation and
annihilation in a site-dependent biquadratic ferromagnetic medium [25]. Thus, it has become
increasingly important to investigate the magnetization reversal process by exploiting the
localized coherent structure of solitons in ferromagnetic media.

In this paper, we demonstrate the magnetization reversal using solitons in a site-dependent
ferromagnet under the influence of localized inhomogeneity. In section 2, we derive the
equation of motion for a site-dependent ferromagnet in the presence of relativistic Gilbert
damping. In section 3, we carry out the multiple scale perturbation method to derive the
evolution equations for soliton parameters and demonstrate reversal of magnetization under
the influence of tangent hyperbolic inhomogeneity. The paper is concluded in section 4.

2. Dynamics of a site-dependent bilinear ferromagnet

Most of the studies on magnetic spin chains have been based on the homogeneous Heisenberg
Hamiltonian, where the exchange interaction coupling between the nearest-neighbour pair of
spins is a single constant J or at most two constants as in the case of uniaxial anisotropy. But
the presence of the magnetic defects introduced inhomogeneity in the exchange interaction.
Generally, inhomogeneity in magnetic materials arises because of the following two factors.
(i) If the distance between neighbouring magnetic atoms varies along the chain depending on
the distance between the spins and the degree of overlapping of electronic wavefunction which
varies from site to site. Thus, the interaction between the spins depends upon the site in the
crystal lattice, which is known as the site-dependent interaction. This type of inhomogeneity
occurs in charge transfer complexes TCNQ, Ni(CN)4, organo-metallic insulators, TTF-
bisdithiolenes and Ni(Co)4 in which the characterizing inhomogeneous parameter alternates
between two values as we move along the spin chain. (ii) If the atomic wavefunction
itself varies from site to site, although the atoms themselves may equally be spaced. This
type of inhomogeneity occurs when magnetic insulators were placed in a weak, static and
inhomogeneous electric field. It can also be simulated by the deliberate introduction of
imperfections (impurities or organic complexes) in the vicinity of a bond so as to alter the
electronic wavefunctions without causing appreciable lattice distortion. For our model, the
associated Landau–Lifshitz–Gilbert (LLG) equation can be written as

�St = �S ∧ �F eff + λ̂[ �F eff − ( �S. �F eff) �S], (1)

where �S = (Sx, Sy, Sz) represents the classical three-component spin vector and �S2 = 1.
The first term in equation (1) describes the precessional motion of a magnetization vector or
spin vector �S(x, t) about �F eff and the second term represents the phenomenological damping
parameter. The phenomenological (Gilbert) damping parameter which causes �S(x, t) gets
relaxed along or anti-parallel to �F eff depending on the nature of the sign of λ̂. Conventionally,
λ̂ is identified as αγ , where α is the dimensionless Gilbert damping parameter and γ is
the gyromagnetic ratio. In equation (1), the �F eff contribution may come from the exchange
interaction, crystalline anisotropy, magnetostatic self-energy, external magnetic fields, thermal
fluctuations and so on. In particular, the effective field �F eff contribution due to the site-
dependent bilinear exchange interaction in the classical continuum limit is given by

�F eff = hx
�Sx + h �Sxx. (2)

Making use of equation (2) in equation (1),

�St = �S∧(hx
�Sx + h �Sxx) + λ̂[hx

�Sx + h �Sxx − h( �S. �Sxx) �S]. (3)

3



J. Phys. A: Math. Theor. 43 (2010) 125201 L Kavitha et al

The function h = h(x) in the effective field �F eff as in equation (2) determines the
inhomogeneity along the spin chain. In order to understand the evolution of nonlinear spin
dynamics of a site-dependent bilinear ferromagnetic spin chain, the spin vector �S(x, t) is
mapped on the unit tangent �e1(x, t) of the moving helical space curve in E3 through the
well-known procedure in the classical differential geometry and the unit normal �e2(x, t) and
bi-normal �e3(x, t) of the curve form a local coordinate system with the origin O ′ in E3 [26].
The variation along the space curve is given by the usual Serret–Frenet (SF) equations as⎛

⎝�e1x

�e2x

�e3x

⎞
⎠ =

⎛
⎝ 0 κ 0

−κ 0 τ

0 −τ 0

⎞
⎠

⎛
⎝�e1

�e2

�e3

⎞
⎠ . (4)

Here, κ = (�e1x.�e1x)
1/2 is the curvature and τ = κ−2�e1.(�e1x × �e1xx) is the torsion of the

space curve. In view of the above identifications, the evolution of �e1 of the trihedron using
equation (3) is given by

�e1t = −(hκτ + λ̂(hκ)x)�e2 + ((hκ)x + λ̂hκτ)�e3. (5)

The evolution of the trihedron �ei , where i = 1, 2, 3, can be evaluated using equations (4) and
(5) and is written as⎛

⎝�e1t

�e2t

�e3t

⎞
⎠ =

⎛
⎝ 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎞
⎠

⎛
⎝�e1

�e2

�e3

⎞
⎠ , (6)

where

ω1 = (hκ)xx

κ
− hτ 2 − λ̂

κ
(2τ(hκ)x + hκτx),

ω2 = −(hκ)x + λ̂hκτ,

ω3 = −hκτ − λ̂(hκ)x.

The compatibility conditions are (�eix)t = (�eit )x , where i = 1, 2, 3. The SF
equations (4) and (6) lead to the evolution of curvature κ(x, t) and torsion τ(x, t) of the
space curve:

κt = −τ(hκ)x + λ̂hκτ 2 − [hκτ + λ̂(hκ)x]x, (7a)

τt = κ[(hκ)x − λ̂hκτ ] −
[
hτ 2 − (hκ)xx

κ
+

λ̂

κ
(2τ(hκ)x + hκτx)

]
x

. (7b)

The energy and current densities of the undamped (λ̂ = 0) inhomogeneous spin chain are
given by

E(x, t) = h

2

(
∂ �S
∂x

)
.
(∂ �S

∂x

)
= h

2
κ2(x, t), (8)

I (x, t) = h2 �S.

(
∂ �S
∂x

× ∂2 �S
∂x2

)
= h2κ2(x, t)τ (x, t). (9)

Thus, the torsion and curvature of the space curve are related to the energy and current densities
of the spin system through the above equations (8) and (9) and hence the spin dynamics is
equivalently represented in terms of the curvature and torsion of the space curve. In order to
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identify the set of coupled equations (7) with a more standard nonlinear partial differential
equation, we make the following complex transformation:

q(x, t) = 1

2
κ(x, t) exp

{
i
∫ x

−∞
τ(x ′, t) dx ′

}
, (10)

and obtain the following damped inhomogeneous nonlinear Schrödinger (DINLS) equation:

iqt + (hq)xx + 2h|q|2q + 2q

∫ x

−∞
hx ′ |q|2 dx ′ − iλ̂

[
(hq)xx − 2q

∫ x

−∞
h(qq∗

x − q∗qx) dx ′
]

= 0,

(11)

when h(x) is a linear function of x and λ̂ = 0; equation (11) is completely reduced to the
inhomogeneous nonlinear Schrödinger equation and admits soliton solutions.

3. Effect of nonlinear inhomogeneity on the spin soliton

The results of singularity structure analysis on equation (11) show that it becomes completely
integrable and the elementary spin excitations can be expressed in terms of solitons for specific
choice of parameters and only when the exchange inhomogeneity appears in the form of a
linear function. When the inhomogeneity is a invariant quantity i.e. h(x) = constant, the
dynamics of a one-dimensional classical continuum isotropic Heisenberg ferromagnetic spin
system in the presence of a weak relativistic interaction is studied by Daniel et al [27]. He
observed that when h(x) = constant and characterizing the non-varying bilinear exchange
interaction, the amplitude of the soliton asymptotically decreases to zero while the velocity
of the soliton monotonically increases to attain a constant value, without showing any sign of
reversal. Also, recently the dynamics of an inhomogeneous Heisenberg ferromagnetic spin
chain with Gilbert damping has been found to exhibit the shape changing property under
the linear inhomogeneity [24]. Further, it is also proved that the nonlinear inhomogeneity is
a good candidate for inducing the magnetization reversal through flipping of solitons in the
ferromagnetic media with higher order exchange interactions [28]. Keeping the above in mind,
the natural question arises as to what will be the effect of a localized nonlinear inhomogeneity
on the spin soliton. In this section, we try to find answer for this question by carrying out
a multiple scale perturbation by considering the tangent hyperbolic localized inhomogeneity
and by treating the inhomogeneity as perturbation on the spin soliton. At the out set, we
substitute

h(x) = h0 + λh1(x), (12)

where h0 and λ are a constant and a small parameter respectively and h1(x) is a nonlinear
function of x in equation (12). After a suitable rescaling and a redefinition of λ̂ as λ̂ = λγ ,
where γ is damping parameter, the equation reads

iqt + qxx + 2|q|2q + λ

[
(h1q)xx + 2h1|q|2q + 2q

∫ x

−∞
hx ′ |q|2 dx ′

− iγ

{
qxx − 2q

∫ x

−∞
(qq∗

x ′ − q∗qx ′) dx ′
}]

= 0. (13)

We study the effect of localized inhomogeneity by treating terms proportional to λ in
equation (13) using the perturbation method as laid down by Kodama and Ablowitz [29].
When λ = 0, equation (13) reduces to the completely integrable cubic NLS equation which
admits the envelope one-soliton solution in the form

q = η sech η(θ − θ0) exp[iξ(θ − θ0) + i(σ − σ0)], (14)
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where θt = −2ξ , θx = 1, σt = η2 + ξ 2 and σx = 0. η and ξ are related to the
scattering parameter of the inverse scattering transform (IST) analysis. Now, we write
η (amplitude), ξ (velocity), θ , θ0 and σ0 as functions of a new time scale T = λt ,
and q = q̂(θ, T ; λ) exp[iξ(θ − θ0) + i(σ − σ0)]. Under the assumption of quasi-stationary,
we then expand q̂ in terms of λ as q̂(θ, T ; λ) = q̂0(θ, T ) + λq̂1(θ, T ) + · · ·, where
q̂0 = η sech η(θ − θ0) and making use of equation (14) in equation (13) at O(λ), we obtain

−η2q̂1 + q̂1θθ + 2q̂2
0 q̂∗

1 + 4q̂2
0 q̂1 = F1(q̂0). (15)

After substituting q̂1 = φ̂1 + iψ̂1 in equation (15), where φ̂1 and ψ̂1 are real functions, we
obtain

L1φ̂1 = −η2φ̂1 + φ̂1θθ + 6q̂2
0 φ̂1 = �F1(q̂0), (16a)

L2ψ̂1 = −η2ψ̂1 + ψ̂1θθ + 2q̂2
0 ψ̂1 = 	F1(q̂0), (16b)

where L1 and L2 are the self-adjoint operators. As q̂0θ and q̂0 are the solutions of the
homogeneous parts of equations (16) for φ̂1 and ψ̂1 respectively, the secularity conditions
yield ∫ ∞

−∞
q̂0θ�F1 dθ = 0 and

∫ ∞

−∞
q̂0	F1 dθ = 0, (17)

where

�F1(q̂0) = h1ξ
2q̂0 − 2h1q̂

3
0 + (ξT (θ − θ0) − ξθ0T − σ0T )q̂0 − (h1q̂0)θθ − 2γ ξ q̂0θ

− 2q̂0

∫ θ

−∞
h1θ q̂

2
0 dθ − 4γ ξ q̂0

∫ θ

−∞
q̂2

0 dθ, (18)

	F1(q̂0) = γ q̂0θθ − q̂0T − 2ξh1q̂0θ − 2ξh1θ q̂0 − γ ξ 2q̂0 − 2γ q̂0

∫ θ

−∞
(q̂0q̂

∗
0θ − q̂∗

0 q̂0θ ) dθ.

(19)

In order to evaluate the integrations in equation (17), we need to provide the explicit form of
the inhomogeneity h1 in equations (18) and (19).

3.1. Magnetization reversal

The secularity conditions (17), on substituting h1(x) = α̂ tanh η(θ −θ0), yield a set of coupled
evolution equations for the amplitude and velocity of the soliton. On evaluating the integrals
and after rescaling T −→ − T

3 , α1 = 2α̂ and α2 = 2γ , the derivatives of the evolution
equations read

ξT T = 4
(
α2

1 − 3α2
2

)
ξ 3η2 − α1α2(22ξ 2η3 − 3ξ 4η + η5) − 8α2

1ξη4, (20)

ηT T = (
3α2

2 − 2α2
1

)
η5 + 10α2

1ξ
2η3 + 24α1α2ξ

3η2 + 9α2
2ηξ 4. (21)

In order to understand the effect of inhomogeneity on the velocity and amplitude of the soliton,
we solve equations (20) and (21), by employing the Jacobi elliptic function method. Further,
we try to find answer for the question whether varying the exchange interaction can induce
the magnetization reversal process in an inhomogeneous ferromagnetic system. Recently, the
Jacobi elliptic sine, cosine function expansion method and the third kind of Jacobi elliptic
function method have been proposed as powerful methods to construct a new kind of periodic
solution of nonlinear wave equations [30, 31]. It shows that under the limiting condition, the
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nonlinear evolution equation exhibits shock-wave solutions or soliton solutions. Suppose we
have a nonlinear evolution equation

N

(
φ,

dφ

dτ
,

d2φ

dτ 2 ,
d3φ

dτ 3 , . . .

)
= 0, (22)

where φ is expressed as a finite series of the Jacobi elliptic sine function sn(τ |k), similarly, the
Jacobi elliptic cosine function cn(τ |k), or the Jacobi elliptic functions of third kind dn(τ |k),

φ(τ) =
n∑

i=0

aisn
i(τ |k), (23)

where ai are constants to be determined later and the higher degree is

O[φ(τ)] = n. (24)

Therefore, the highest degree of dpφ

dτp is taken as

O

[
dpφ

dτp

]
= n + p, p = 0, 1, 2, . . . , (25a)

O

[
φq dpφ

dτp

]
= (q + 1)n + p, p, q = 0, 1, 2, . . . . (25b)

Thus, in order to fix ‘n’ in equation (23) we have to balance the highest order derivative
and nonlinear term in equation (22). Substituting equation (23) into equation (22) and equating
to zero the coefficient of all powers of sn(τ |k), cn(τ |k) and dn(τ |k) yields a set of algebraic
equations for ai. Finally, by inserting each solution of this set of algebraic equations into
equation (23), the exact solution can be obtained. Now assuming that equations (20) and (21)
have the solution of the form of

ξ(T ) =
n∑

i=0

aisn
i(T |k), (26a)

η(T ) =
m∑

j=0

bj sn
j (T |k), (26b)

where k is the modulus of the elliptic functions which represents the periodicity of the function
and balancing the higher derivative terms with nonlinear terms, we obtain n + 2 = 4n + m

and m + 2 = 3n + 2m. On solving for n and m we obtain n = 1 and m = −1. Then using
equations (27) into equations (20) and (21), we obtain a system of algebraic equations in terms
of a0, a1, b0, b−1, α1 and α2 as presented in appendix A. Now solving the above system of
algebraic equations using symbolic computation, we obtain the following solutions:

ξ(T ) = a0 + a1sn(T |k), (27a)

η(T ) = b0 + b−1sn(T |k)−1, (27b)

where

a1 = −12α1α2a
3
0 + 15α2

1b0a
2
0 − 10α2

1b
3
0 + 15α2

2b
3
0

10b−1α
2
1a0

, (28a)

b−1 = 1√
5b2

0

(
3α2

2 − 2α2
1

)
+ 5α2

1a
2
0

, (28b)
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(a) (b)

Figure 1. Evolution of (a) the amplitude and (b) the velocity of the soliton with α̂ = 0.81, γ = 0,
a0 = 1.5, b0 = 0.8 and k = 0.5.

and

a1 = −b0
(
27α2

2a
2
0 + 36α1α2b0a0 + 5α2

1b
2
0

)
6α2b−1(4α1b0 + 3α2a0)

, (28c)

b−1 =
√

5b2
0

(
3α2

2 − 2α2
1

)
+ 5α2

1a
2
0

5b2
0

(
2α2

1 − 3α2
2

) − 5α2
1a

2
0

. (28d)

We try to demonstrate magnetization reversal via soliton flip by plotting the amplitude η

and the velocity ξ of the soliton from equations (27) by choosing the parameters α̂ = 0.81, a0 =
1.5, b0 = 0.8 and k = 0.5 in figure 1. From the figures, for the undamped case, we observe that
as time passes the velocity and amplitude of the soliton increases and after reaching a maximum
value the soliton suddenly flips leading to magnetization reversal, and the soliton starts moving
in the opposite direction. Figure 1(a) depicts the amplitude evolution of the soliton and implies
that the flipping of the soliton occurs periodically and continues indefinitely. However, the
evolution of velocity of the soliton depicts only a marginal reversal as shown in figure 1(b). It
is also observed that when the soliton amplitude changes from positive (negative) to negative
(positive), it slowly moves either forward or backward. The amplitude of the soliton can be
tuned to have marginal reversal as shown in figure 2. The velocity of the soliton can also be
tuned by the damping parameter such that the soliton may move either forward or backward
very fast, as depicted in figure 2. The velocity of the soliton shows dramatic turns at the
points when it reverses or switches. The magnetization reversal through soliton flipping lies
in the nanoscale regime. In our analysis, it is found that in the absence of damping, the
soliton takes 7.5 ns to complete one cycle. More interestingly, it is also found that when we
increase the value of the Gilbert damping parameter, the switching time is reduced to 5 ns.
Moreover, we attempt to solve the evolution equations for soliton parameters numerically
using the fourth-order Runge–Kutta method coupled with a time domain integration scheme
and investigate the magnetization dynamics under the influence of localized inhomogeneity
on the Heisenberg ferromagnet with Gilbert damping. We have deduced equations (20) and
(21) after numerically solving for the amplitude η(T ) and the velocity ξ(T ) of the soliton by
choosing the initial value of η(T ) = η(0) = 0.9, ξ(T ) = ξ(0) = −0.3 and α̂ = 0.5 with a
step size h = 0.1. We have compared these results of figures 3 and 4 with the analytical results
and it is found that the numerical results are in close agreement with the analytical results.
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(a) (b)

(c) (d )

Figure 2. Evolution of (a, c) the amplitude and (b, d) the velocity of the soliton with α̂ = 0.81,
a0 = 1.5, b0 = 0.8 and k = 0.5. (a) and (b) for γ = 1 and (c) and (d) for γ = 2.25.

(a)

(b)

Figure 3. The evolution of numerical solutions for (a) the amplitude and (b) the velocity of the
soliton with η(0) = 0.9, ξ(0) = −0.3, α̂ = 0.5 and γ = 0.

3.2. Perturbed solitons

The perturbed soliton can be constructed by solving equation (16) for φ̂1 and ψ̂1. The
homogeneous part of equation (16a) admits the following two particular solutions:

φ11 = sech η(θ − θ0) tanh η(θ − θ0), (29a)

φ12 = −1

η

[
sech η(θ − θ0) − 3

2
η(θ − θ0)φ11 − 1

2
tanh η(θ − θ0) sinh η(θ − θ0)

]
. (29b)
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(a) (b)

(c) (d )

Figure 4. The evolution of numerical solutions for (a, c) the amplitude and (b, d) the velocity of
the soliton with η(0) = 0.9, ξ(0) = −0.3 and α̂ = 0.5. (a) and (b) for γ = 1 and (c) and (d) for
γ = 2.25.

Knowing the two particular solutions, the general solution can then be obtained using the
formula

φ̂1 = δ1φ11 + δ2φ12 − φ11

∫ θ

−∞
φ12�F1 dθ ′ + φ12

∫ θ

−∞
φ11�F1 dθ ′, (30)

where δ1 and δ2 are the arbitrary constants. Using φ11, φ12 and �F1 in equation (30) and
after evaluating the integrals with lengthy algebra (for the details of calculation, please see
appendix B), we write the general solution for φ̂1 as

φ̂1 =
[
δ1 +

3

2
δ2� +

2

3
α̂η ln cosh η� − 1

4
ξT �2 − 2

3

α̂ξ 2

η2
− 3

4

ξT

η2
+

1

2
(ξθ0T + σ0T )�

+
4

3
γ ξ + α̂η

]
sech η� tanh η� +

[
−δ2

η
+

(
2

3
γ ξη +

1

3
α̂η2 − 1

3
α̂ξ 2

)
�

− 1

2η
(ξθ0T + σ0T )

]
sech η� − 3

2η
(ξθ0T + σ0T ) sech3η�

+

[
1

6η2

(
3

2
ξT + α̂ξ 2η − α̂η3 − 2γ ξη2

)
+

1

2η
δ2 tanh �

]
sinh�. (31)

We remove the secular terms, which make the solution unbounded by choosing the arbitrary
constant

δ2 = −2(ξθ0T + σ0T ). (32)

10
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Further using the boundary conditions

φ̂1(0)|θ0=0 = 0, φ̂1θ (0)|θ0=0 = 0, (33)

we obtain

δ1 = 1

η2

(
1

4
ξT +

2

3
α̂η2 − 4

3
γ ξη2 − α̂η3

)
. (34)

Using equations (32) and (34), the explicit form of φ̂1 can be constructed. In the similar way,
ψ̂1 can also be evaluated using the two particular solutions corresponding to the homogeneous
part of equation (16b) for ψ̂1 which are of the form

ψ11 = sech η(θ − θ0), (35a)

ψ12 = 1

2η
[η(θ − θ0)sech η(θ − θ0) + sinh η(θ − θ0)]. (35b)

Knowing the two particular solutions, the general solution can then be obtained using the
formula

ψ̂1 = δ3ψ11 + δ4ψ12 − ψ11

∫ θ

−∞
ψ12	F1 dθ ′ + ψ12

∫ θ

−∞
ψ11	F1 dθ ′, (36)

where δ3 and δ4 are the arbitrary constants. Using ψ11, ψ12 and 	F1 in equation (36) and after
evaluating the integrals (for the details of calculation, please see appendix B), we write the
general solution for ψ̂1 as

ψ̂1 =
[
δ3 +

1

2
δ4� − 1

3
γ η − 2

3
α̂ξ − 1

2
η��T − 2

3
(γ η + 2α̂ξ ) ln cosh η�

+

(
1

3
α̂ξη2 +

1

6
γ η3 +

1

2
γ ξ 2η

)
�2

]
sech η�

−
[

2

3
α̂ξη +

1

3
γ η2 + γ ξ 2

]
�sech η� tanh η�

+

[
1

2η
δ4 −

(
1

4η2
ηT +

1

6
γ η +

1

2
γ ξ 2 +

1

3
α̂ξ

)]
tanh � sinh �. (37)

We remove the secular terms, which make the solution unbounded by choosing the arbitrary
constant

δ4 = 0. (38)

Further using the boundary conditions

ψ̂1(0)|θ0=0 = 0; ψ̂1θ (0)|θ0=0 = 0, (39)

we obtain

δ3 = 1
3 (2α̂ξ + γ η). (40)

Using equations (38) and (40), the explicit form of ψ̂1 can be constructed. Having obtained
the explicit form of ξ , η, φ̂1 and ψ̂1, we can easily construct the perturbed soliton solution q̂1

through the relation q̂1 = φ̂1 + iψ̂1. The solution for q̂1 is

q̂1 =
[

1

3

α̂ξ 2

η
− 1

3
α̂η − 2

3
γ ξ +

2

3
α̂η ln cosh η� −

(
1

3
γ ξη2 +

1

6
α̂η3 − 1

6
α̂ξ 2η

)
�2

+
1

2
(ξθ0T + σ0T )�

]
sech η� tanh η� +

[(
2

3
γ ξη +

1

3
α̂η2 − 1

3
α̂ξ 2

)
�

11
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Figure 5. Real part of the perturbed soliton and its contour plots with α̂ = 0.7, β = 0.1, δ = 0.5,
a0 = 0.5, b0 = 0.3 and k = 0.5 (i) γ = 0 (ii) γ = 0.4

− 1

2η
(ξθ0T + σ0T )

]
sech η� − 3

2η
(ξθ0T + σ0T ) sech3η�

− i

{[
2

3
α̂ξη +

1

3
γ η2 + γ ξ 2

]
�sech η� tanh η�

−
[(

1

3
α̂ξη2 +

1

6
γ η3 +

1

2
γ ξ 2η

)
�2 − 1

2
η��T

−2

3
(γ η + 2α̂ξ ) ln cosh η�

]
sech η�

}
, (41)

where � = θ − θ0. We have plotted the real and imaginary parts of the perturbed soliton
by choosing the values of the parameters α̂ = 0.7, β = 0.1, δ = 0.5, a0 = 0.5, b0 = 0.3
and k = 0.5 in figures 5 and 6. Both the figures demonstrate the magnetization reversal
via soliton flip which occurs periodically. This implies that when the soliton moves along
the ferromagnetic spin chain, the presence of localized inhomogeneity in the varying bilinear
exchange triggers switching through flipping of solitons. In the contour plots, figures 5(b) and
6(b), the bigger loops represent the unflipped states of the soliton and the smaller connecting
loops represent the flipped (reversed) states of soliton. When the value of the damping

12
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Figure 6. Imaginary part of the perturbed soliton and its contour plots with α̂ = 0.7, β = 0.1, δ =
0.5, a0 = 0.5, b0 = 0.3 and k = 0.5 (i) γ = 0.0 and (ii) γ = 0.4.

parameter is increased, the amplitude of the soliton decreases appreciably leading to the
marginal reversal in the ferromagnetic medium.

4. Conclusions

In summary, we studied the effect of localized nonlinear inhomogeneity on the spin soliton of
a classical continuum Heisenberg ferromagnetic spin chain. The effect of inhomogeneity was
understood by carrying out a multiple perturbation analysis on an inhomogeneous generalized
higher order NLS equation. We solved the coupled evolution equations for the velocity and
amplitude of the soliton for nonlinear inhomogeneity in the form of a localized hyperbolic
function using the Jacobi elliptic function method. The evolution of the amplitude and velocity
of the soliton leads to magnetization reversal via the flipping of solitons in the ferromagnetic
medium. In the presence of localized inhomogeneity the soliton undergoes curious changes
and shows dramatic turns as the velocity and amplitude of the soliton change, periodically. This
switching of behaviour of soliton is also studied and verified numerically through the fourth-

13
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order Runge–Kutta method. Thus, the nonlinear inhomogeneity acts as a good candidate
for inducing the magnetization reversal through flipping of solitons. Finally, we have also
constructed the perturbed soliton solutions. The above spin soliton flipping phenomenon
which leads to magnetization reversal in a ferromagnetic medium is expected to have potential
applications in magnetic memories and recording.
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Appendix B.

φ11

∫ θ

−∞
φ12�F1(q̂0) dθ =

[(
1

2
α̂ξ 2 − 1

2
α̂η2 − γ ξη

)
� +

3

4η
(ξθ0T + σ0T )

]
sech η�

+

[
(2γ ξη − α̂ξ 2 + 2α̂η2)� − 3

4η
(ξθ0T + σ0T )

]
sech3η�

+

[
1

2
α̂ξ 2 − γ ξη − 5

2
α̂η2

]
� sech5η� + α̂η2� sech7η�

+

[
1

4
ξT �2 − 1

2
(ξθ0T + σ0T )� − 2

3
α̂ηlncoshη�

]
sech η� tanh η�

+

[
3

4
(ξθ0T + σ0T )� − 3

4
ξT �2 +

1

2η
α̂ξ 2 − 11

6
α̂η − γ ξ

]
sech3η� tanh η�

+ α̂η sech5η� tanh η�,

φ12

∫ θ

−∞
φ11�F1(q̂0) dθ =

[(
1

2η
ξT +

1

2
α̂ξ 2 − 1

2
α̂η2 − γ ξη

)
� +

1

4η
(ξθ0T + σ0T )

]
sech η�

+

[
(2γ ξη − α̂ξ 2 + 2α̂η2)� − 3

4η
(ξθ0T + σ0T )

]
sech3η�

+

[
1

2
α̂ξ 2 − γ ξη − 5

2
α̂η2

]
� sech5η� + α̂η2� sech7η�

+

[
4

3
γ ξ − 2

3η
α̂ξ 2 − 3

4η2
ξT + α̂η

]
sech η� tanh η�

+

[
3

4
(ξθ0T + σ0T − ξT �)� +

1

2η
α̂ξ 2 − 11

6
α̂η − γ ξ

]
sech3η� tanh η�

+ α̂η sech5η� tanh η� +
1

6η2

[
3

2
ξT + α̂ηξ 2 − α̂η3 − 2γ ξη2

]
sin η�,

ψ11

∫ θ

−∞
ψ12	F1(q̂0) dθ =

[
1

4
ηT �2 +

1

2
η��T

]
sech η�

− 1

4

[
ηT �2 + η��T − 4

3
(γ η + 2α̂ξ )

]
sech3η�

−
[(

1

6
γ η2 +

1

3
α̂ξη +

1

2
γ ξ 2 +

1

2η
ηT

)
� +

1

4
�T

]
sech η� tanh η�

− 1

3
(γ η2 + 2α̂ηξ)� sech3η� tanh η� +

2

3
(γ η + 2α̂ξ )sech η� lncosh η�,
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ψ12

∫ θ

−∞
ψ11	F1(q̂0) dθ = −

[
1

3
γ η +

2

3
α̂ξ

]
sech η�

−
[

1

4
ηT �2 +

1

4
η��T − 1

3
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]
sech3η�

−
[(

1

6
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1

3
α̂ξη +

1

2
γ ξ 2

)
� +

1

4
�T

]
sech η� tanh η�
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3
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